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Abstract. A one-dimensional Eulerian Vlasov code is used to study the self-consistent solution of a plasma
facing a floating collector, in the absence of an external magnetic field. Both electrons and ions are treated
with a kinetic equation. A Bhatnagar-Gross-Krook (BGK) collision term is used to describe the collisions.
Acceleration of the ion flow at the Debye sheath entrance is observed together with the formation of a
stable steep negative electric field in front of the floating collector. This negative electric field acts to
accelerate the positive ions towards the plate, pushing back the negative electrons, such that at steady
state the total current collected at the plate is zero. The codes are run for a sufficiently long time on the
ions time scale to ensure the ions (argon) distribution function is reaching a steady state. For the different
parameters used, the solution shows the existence of persistent regular oscillations of constant amplitude
when the electron collisions are very small or negligible. These oscillations will be studied. The increase in
the electron collisions damps these oscillations and helps the system reach an equilibrium.

PACS. 52.65.Ff Fokker-Planck and Vlasov equation

1 Introduction

Many problems of plasma-wall interaction require a self-
consistent solution of a plasma layer in contact with a wall.
In industrial plasmas, these problems are important for
plasma etching and ion sputtering which are at the core
of a revolution in microprocessors technology and other
material processing applications. The knowledge of the ex-
act form of energy distributions of charged particles near
the metal substrates immersed into the plasma, and the
analyses of the changes in these distributions during the
transport through both the presheath and the sheath for
various biases and substrates geometries is of fundamental
importance to control these processes. Probes characteris-
tics are also of fundamental importance in industrial plas-
mas as well as in other plasmas applications such as toka-
maks. The plasma limiter and plasma-divertor interaction
are the most important problems in the edge physics of
tokamaks.

There is an abundant literature which studies plasma-
wall transition problems with the assumption that the
electrons density can be calculated from a Boltzmann re-
lation ([1] and references therein), and more recently the
Boltzmann relation for electrons has been used in codes
where the ions kinetic has been studied using a fully ki-
netic Vlasov equation [2,3]. Close to the wall, however,
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in the presence of electric fields, the electrons distribution
function is non-Maxwellian and electrons should be de-
scribed by a kinetic equation, since the electrons kinetic
and distribution determine the rate at which a multitude
of electron driven processes will proceed in low temper-
ature plasmas. The electron energy distribution function
is of fundamental importance in gas discharges since the
excitation and ionization of gas atoms is, to a large part,
caused by electrons. On the other hand simulations with
particle in cell (PIC) codes have been used [4,5], but
they suffer from high noise levels which makes it diffi-
cult to obtain accurate distribution functions and the re-
lated moments from them. Recently, an Eulerian Vlasov
code [6,7] in which the electrons were treated using a ki-
netic equation was used to study the problem of a mag-
netized sheath. Eulerian Vlasov codes have very low noise
level, and allow accurate calculations of the distribution
functions and the macroscopic quantities associated with
them. Eulerian Vlasov codes have been also recently ap-
plied for accurate solution of the problem of radio fre-
quency (RF) inductive coupling in an argon plasma, using
real electron to ion mass ratio [8]. It is the purpose of the
present work to present a one-dimensional kinetic Vlasov
code to study the self-consistent solution of a plasma fac-
ing a floating collector, in the absence of an external mag-
netic field. Both electrons and ions are treated with a ki-
netic equation. Two cases will be studied. First a BGK
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term is used to describe the ion collisions and ionization,
similar to the one used in reference [2], neglecting elec-
trons collisions. Then, the effect of the electron collisions
will be introduced.

The results for exact electron to ion mass ratio me/mi

using argon and for different parameters show for very
weak or negligible electron collisions the presence of steady
state oscillations, and a stable steep density profile and
electric field facing the floating collector plate, where
strong acceleration of the ions takes place. This steady
state is reached when the total current to the plate is
zero. The steady state oscillations damp when the elec-
tron collisions are increased.

2 The pertinent equations

We study the transition of a plasma to a perfectly ab-
sorbing wall, in the absence of an external magnetic field.
The phase-space is two-dimensional x, νx, where the co-
ordinates are normal to the wall. The electrons and ions
distribution functions fe and fi are calculated from their
respective Vlasov equation, with a BGK term included
which have a collision frequency νi,e

∂fi,e

∂t
+ νx

∂fi,e

∂x
± e

mi,e
Ex

∂fi,e

∂νx
= νi,e (fMi,e − fi,e) (1)

where fMi,e is the equilibrium Maxwellian distribution for
the ions or electrons. The system is closed by Poisson’s
equation:

∂2φ

∂x2
= − e

ε0
(ni(x, t) − ne(x, t)) (2)

with the electric field Ex = −∂φ/∂x, and

ne,i(x, t) =

∞∫
−∞

fe,i (x, νx, t) dνx. (3)

The BGK collision operator (on the right hand side of
Eq. (1)) in a weakly ionized plasma represents the col-
lisions of ions (electrons) with neutral atoms. The nega-
tive term −νi,efi,e represents the rate at which ions are
removed, and the positive term νi,efMi,e is the rate of
production of new ions. A similar collision term has been
recently used in reference [2].

We assume an initial neutral plasma with uniform
electron ne and ion ni densities such that ne = ni. We
assume the initial values of the electrons and ions dis-
tribution functions to be Maxwellian, with temperature
respectively of Te and Ti. We take our domain of inte-
gration to be L = 150 Debye lengths (λDe = νthe/ωpe

where νthe = (κTe/me)
1/2, and ωpe is the plasma fre-

quency). The floating wall or absorbing plate is located
at x = 0. We assume that the plasma extends at the right
boundary, so that the point next to the boundary point
is identical to the boundary point. The ions and the elec-
trons with νx > 0 at the right boundary are left free to

leave the plasma, and the ions and electrons with νx < 0
are assumed to enter from an identical plasma extend-
ing to the right at the next grid point, i.e. we assume
fi,e (L + ∆x, t) = fi,e (L, t). This establishes the flux at
the right boundary without forcing the distribution func-
tion at the right boundary. The exact balance between this
flow at the right boundary, the charge collected at the left
boundary by the floating plate is calculated as follows.
At the left boundary, particles with νx < 0 are hitting the
plate, lost from the system, and collected through the cur-
rent delivered at the plate (there is no incoming particles
from wall at x = 0 since there is no particles reflected or
emitted at the wall with νx >0):

∂Ex

∂t

)
x=0

= −Jx

ε0

)
x=0

= − Jxi − Jxe

ε0

)
x=0

(4)

from which:

Ex)x=0 = − 1
ε0

t∫
0

dtJx




x=0

(5)

Jxe,i

)
x=0

=

0∫
−∞

νxfe,i (0, νx, t) dνx (6)

(only particles with νx < 0 are hitting the wall at the left
boundary and are absorbed by the wall).

We can also write:

Ex)x=0 = −∂φ

∂x

)
x=0

(7)

which determines one of the boundary conditions for the
solution of the potential in equation (2) at x = 0. For the
right boundary condition on the potential, we integrate
the equation:

∂Ex

∂x
=

e

ε0
(ni − ne) =

ρ

ε0
(8)

over the domain; we get:

Ex)x=L −Ex)x=0 =

L∫
0

ρ

ε0
dx =

σ

ε0
. (9)

The system is initially neutral ne = ni. The total charge σ
which appears in the system, in the course of the simula-
tion, must be equal to the difference in the electric fields
at the boundaries.

Ex)x=0 is calculated from equation (5), which defines
the derivative of the potential at x = 0. Since the deriva-
tive of the potential is specified at the left boundary, we
can fix the potential to be zero at the right boundary (if φ
is a solution, φ + const is also a solution). The resulting
electric field Ex)x=L calculated at x = L from the solu-
tion of Poisson’s equation must satisfy equation (9), which
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is used as a check. The agreement between Ex)x=L calcu-
lated from the Poisson’s equation and the value calculated
from equation (9):

Ex)x=L =
σ

ε0
+ Ex)x=0 (10)

was fairly good. So equation (10) is used as a check.
Equation (10) gives the exact balance between the

charge collected at the plate at the left boundary, the
charge appearing in the plasma during the simulation,
and the electric field at the right boundary, in a system
which is only initially neutral, and evolves to a steady
non-neutral state. The fairly good agreement obtained in
verifying equation (10) necessitated a sufficiently fine grid
in space to calculate the total charge σ accurately at every
time step, and a sufficiently small time step ∆t to calcu-
late the accumulation of charge at the plate at x = 0 from
equation (5).

The Vlasov equations in equation (1) were solved by
a method of fractional steps associated with cubic splines
interpolation as discussed in references [9,10], and as suc-
cessfully applied recently for the study of RF inductive
coupling in argon plasmas [8]. The maximum velocity
for each species extended to four initial thermal veloc-
ity for the species considered

(
νmaxei

= 4νthe,i

)
, 70 grid

points were used for the ion species in the velocity domain
[−νmaxi

; +νmaxi
], and 200 grid points for the electrons

in the velocity domain [−νmaxe ; +νmaxe ]. 300 or 400 grid
points were used in space to discretize the spatial domain
[0; L]. The fractional steps scheme, when centered in space
and time, is second order. To advance equation (1) for a
time step ∆t, we apply the following fractional steps:

– step 1: solve for ∆t/2

∂fi,e

∂t
+ νx

∂fi,e

∂x
= 0

– update the electric field from equation (2);
– step 2: solve for ∆t/2

∂fi,e

∂t
± e

mi,e
Ex

∂fi,e

∂νx
= 0;

– step 3: solve for ∆t

∂fi,e

∂t
= νi,e

(
fMi,e − f

i,e

)
.

This equation is solved using a simple Eulerian scheme,
since we usually use a sufficiently small ∆t.

– step 4: repeat step 2;
– step 5: repeat step 1.

The solution of the equations in steps 1, 2, 4, and 5 are
calculated using cubic splines interpolation as discussed in
references [8–10].

Argon plasma is considered. In Section 3, we present
the results for the case where the electron collisions are
neglected. In Section 4, the effect of the electron collisions
on the results of Section 3 will be presented.

3 Results for the case where electron
collisions are neglected

The results will be presented using normalized units. Un-
less otherwise stated in the graphical output, time is nor-
malized to the ion plasma period ω−1

pi for argon, velocity
is normalized to cs =

√
κTe/mi, and length is normal-

ized to the Debye length λDe = csω
−1
pi . We present results

for an argon plasma, with me/mi = 1/(40 × 1836), and
with Te/Ti = 2. Real mass ratio is used in the calculation.
We start the system from an initially uniform plasma with
ne = ni = 1. Electrons are followed on the electron plasma
period time scale, which in our normalized units is given
by ω−1

pe /ω−1
pi = 1/(40 × 1836)1/2 = 0.0037. We choose a

time-step ∆ti = 0.001 for the ions. For the electrons, the
time-step ∆te = ∆ti/10 = 0.0001. As discussed for equa-
tion (10), we choose this small time-step to ensure the dif-
ferent charges calculated in equation (10) are accurately
calculated.

This means that we integrate the electrons for 10 time-
steps with ∆te (updating the electric field), while keeping
the ions fixed. Then the argon ions are advanced with ∆ti.
With ∆te = 1×10−4, the electrons were integrated about
37 times during an electron plasma period (given by 0.0037
as mentioned above). Although a bigger time-step could
have been chosen for the ions, this computational effort
was taken in view of the different oscillations appearing
in the present case in the system in space and time and
the rapid evolution at the beginning, and to ensure equa-
tion (10) is accurately satisfied during the entire simu-
lation. N = 300 grid points were used in space for this
simulation. Note that a simulation effected by increasing
the time-step by a factor of 2 for the ions reproduced ex-
actly the same results. In the present simulation we use
for the argon collision frequency a ratio νi/ωpi = 0.05, and
νe = 0.

We ran the code for sufficiently long time up to ωpit =
150 to ensure the ions distribution function has reached
its steady state. Also pushing the calculations further in
time was reproducing the same steady state. The system
appeared reaching its steady state well before ωpit = 100.
Until the end of the simulation, a constant and regu-
lar oscillation of the potential, of a period close to 0.024
(around 6 electron plasma periods) is present and repeat-
ing itself very regularly. At the end of the simulation at
ωpit = 150, several thousand of these oscillations have
been performed, verifying equation (10) with the same
accuracy, and without showing any sign of attenuation.
Figure 1 shows the contour plot of the argon ions distribu-
tion function, with a smooth transition from a distribution
very close to Maxwellian at the right boundary, to a distri-
bution showing a strong acceleration toward the negative
velocities in the Debye sheath near the plate. Cuts in the
contour plot at: (a) x = 0; (b) x = 5λDe; (c) x = 15λDe;
(d) x = 75λDe; (e) x = 150λDe; are presented in the
bottom of Figure 1, showing at x = 0 and at x = 5λDe

the strong shift of the distribution functions toward the
negative velocities in the sheath region. In our normal-
ized units where time is normalized to ω−1

pi , the argon
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Fig. 1. Contour plot of the distribution functions for the argon
ions at ωpit = 150.0. Case without electron collisions. Lower
curves, distribution function obtained by cuts at: (a) x = 0;
(b) x = 5λDe; (c) x = 15λDe; (d) x = 75λDe; (e) x = 150λDe

(νi/ωpi = 0.05).

plasma period is 2π = 6.28. Figure 2 shows the electron
distribution function at ωpit = 150. We show in Figure 3
the potential over half a period of potential oscillation, at
t = 150 and t = 150.012. During this oscillation, the slope
of the potential at the origin x = 0 is remaining essen-
tially constant, fixed by the value of the charge collected
at the floating plate, determined by equations (5) and (7).
This value of the charge collected at the floating plate de-
termines also from equation (7) the value of the electric
field at x = 0, shown in Figure 4 to be fixed and equal
to about −1.375. The electric field is shown in Figure 4
at the peak (ωpit = 150.0) and minimum (ωpit = 150.012)
of the potential in Figure 3. During the oscillation, the
electric field in Figure 4 shows a steady steep negative
profile in a layer of few Debye lengths where the ions are
strongly accelerated towards the plate, and the electrons
strongly repelled from the plate. Note in the flat part of

Fig. 2. Same as Figure 1, but for the electron distribution
function at ωpit = 150.0.

Fig. 3. Potential during a period of oscillation, from ωpit =
150.0 until ωpit = 150.012 (νi/ωpi = 0.05).
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Fig. 4. Electric field at ωpit = 150.0 and ωpit = 150.012
(νi/ωpi = 0.05).

Fig. 5. Density at ωpit = 150.0 (full curves for electrons, dot-
ted curve for argon ions, νi/ωpi = 0.05).

the profile a small oscillations around zero. Figure 5 shows
the density profile in which the ions show a finite value
at the plate, but the electrons show a steep profile with
an almost vanishing density at the plate (full curves). The
density profile of the argon ions (broken curve) in Figure 5
is essentially constant. The density profile of the electrons
(full curve) oscillates and the points of intersection of the
electron density curves behave essentially as nodes points
during the oscillations, and the electrons density at these
points is constant. (This point will be discussed in more
details for the results with νi/ωpi = 0.1 where the oscilla-
tions increase). The charge ni−ne at t = 150 and 150.012
(at the peak and minimum of the potential oscillation) is
shown in Figure 6. Note the decline in front of the plate.
There is a very small oscillation, apparent especially on
the flat part of the charge profile, from which results the
oscillation of the potential in Figure 3. Figure 7 shows
the argon current Jxi (full curve) and the argon velocity
Jxi/ni (broken curve). The heavy ions show no oscilla-
tions, reaching the plate at a constant small current. The
electron currents Jxe in Figure 8 (full curves) are showing

Fig. 6. Charge ni − ne at ωpit = 150.0 and ωpit = 150.012
(νi/ωpi = 0.05).

Fig. 7. Argon ions current Jxi (full curve) and velocity
Jxi/ni (broken curve) at ωpit = 150.0, and ωpit = 150.012
(νi/ωpi = 0.05).

Fig. 8. Electrons current Jxe (full curve) and velocity Jxe/ne

(broken curve) at ωpit = 150.006, ωpit = 150.012 and ωpit =
150.018 (νi/ωpi = 0.05).



86 The European Physical Journal D

Fig. 9. Contour plot of the distribution functions for the argon
ions at ωpit = 200.0. Case without electron collisions. Lower
curves, distribution function obtained by cuts at: (a) x = 0;
(b) x = 5λDe; (c) x = 15λDe; (d) x = 75λDe; (e) x = 150λDe

(νi/ωpi = 0.1).

a more important oscillation, reaching the plate at the left
at essentially the same current as the ions, ensuring that
Jx = Jxi − Jxe is zero at the plate (x = 0) in the steady
state phase. Note the oscillation which persisted with a
regular period of 0.024 for several thousands oscillations.
Hence the steady state we see is a state in which the to-
tal current to the plate is essentially zero, and the electric
field at the plate remains essentially constant and equal to
about −1.375 as apparent in Figure 4. (This discussion on
the edge electric field and charge holds for the simulations
with νi/ωpi = 0.1 still to be presented).

We present another set of results with νi/ωpi = 0.1
and νe = 0, all other parameters remaining identical.
This simulation was done with ∆t = 5 × 10−4, and using
400 grid-points in space. For the electrons, the time-step
was 5×10−5, so the ions are advanced in time every once,
every 10 time-step for the electrons. Figure 9 presents at

Fig. 10. Same as Figure 9, but for the distribution function
of the electrons at ωpit = 200.0 (νi/ωpi = 0.1).

ωpit = 200.01 the argon distribution function for this case,
which seems to be at steady state, and is distorted and
accelerated in a thinner layer than the corresponding one
in Figure 1 for νi/ωpi = 0.05 (since the driving collision
term to the equilibrium distribution is stronger than for
the results presented in Fig. 1). In Figures 10 and 11, the
contour plot of the electrons show a sawtooth structure
in space. The distortion and oscillation of the potential in
Figure 12 are shown during a half period of oscillation,
from ωpit = 200.0 until ωpit = 200.011. The amplitude
of the oscillations are more important and show a period
of 0.022, slightly lower than the period we see in the first
simulation (at νi/ωpi = 0.05). (Note in Fig. 12 at the
end of the period the curve g at ωpit = 200.22 essentially
identical to the curve a at ωpit = 200.0.) For the present
set of parameters, the variation of the ions collision fre-
quency shows a small effect on the observed period of os-
cillation. The regular period of the sawtooth structure in
Figures 10 and 11 reflects exactly the regular period of
the potential in Figure 12. The negative electric field in
front of the plate in Figure 13 is pushing back the elec-
trons. However immediately behind this steady negative
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Fig. 11. Same as Figure 9, for the distribution function of the
electrons at ωpit = 200.011 (νi/ωpi = 0.1).

Fig. 12. Potential during a half period of oscillation, from
ωpit = 200.0 until ωpit = 200.011; the period extends until
ωpit = 200.022 (νi/ωpi = 0.1).

Fig. 13. Electric field during a half period from ωpit = 200.0
until ωpit = 200.011 (νi/ωpi = 0.1).

Fig. 14. Density profiles for electrons (full curve) and ar-
gon ions (broken curve), at ωpit = 200.0, and ωpit = 200.011
(νi/ωpi = 0.1).

field, there is an oscillating electric field. Electrons arriv-
ing with negative velocities from the right boundary can
be decelerated when the oscillating electric field is nega-
tive, or accelerated when the field is positive, resulting in
a bunching or modulation of the same period as the oscil-
lation. The reflected electrons traveling to the right with
positive velocities show the effect of this modulation or
bunching with this sawtooth structure. As we can judge
from the last two top contours in Figures 10 and 11, the
higher the velocity, the longer the length of a sawtooth
period. If we take the sawtooth at the last contour on
the top, the length period is about 15 Debye lengths. The
velocity, normalized to (Te/mi)

1/2 as in the calculations,
it is about 640. So the period of one of the sawtooth is
about 15/640 ≈ 0.022. Figure 12 shows the spatial pro-
files evolution during a half-period of 0.011. The density in
Figure 14 is shown at the peak and minimum of the poten-
tial in Figure 12. Note in Figure 13 a higher electric field
at the plate, equal to about –1.51, and equal to the charge
collected at the floating plate as given by equation (5), as
previously discussed. In Figure 14, the density of argon
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Fig. 15. Charge ni − ne at ωpit = 200.0, ωpit = 200.0055 and
ωpit = 200.011 (νi/ωpi = 0.1).

Fig. 16. Argon ions current Jxi (full curve) and velocity
Jxi/ni (broken curve), at ωpit = 200.00 and ωpit = 200.011
(νi/ωpi = 0.1).

at the plate is higher, the argon density profile (broken
curve) is essentially constant, while the electron density
profiles (solid curves) show a modulation around the ar-
gon density curve, which translates into nodes (points of
constant density) appearing along x. This modulation ap-
pears also in the charge ni − ne in Figure 15. Note the
charge in the few Debye lengths layer close to the plate
remaining essentially constant. Note also the oscillations
of the electric field Ex)x=L at x = L in Figure 13 reflecting
exactly the oscillation of the total charge σ, since Ex)x=0

is equation (10) is constant as we can verify at the left
boundary.

Figure 16 gives the ion current Jxi (full curve), and the
velocity Jxi/ni (both essentially constant in time). Note
the ion current at the plate about twice that in Figure 7,
while the velocity peak (broken curve) is slightly lower.
Figure 17 gives the electrons current, showing a more im-
portant oscillation. These oscillations repeated themselves
with the same period 0.022 several thousand times. The
electron Jxe at the plate x = 0 is such that the total cur-
rent Jx = Jxi − Jxe at the plate x = 0 is equal to zero. To

Fig. 17. Electrons current Jxe(full curve) and velocity Jxe/ne

(broken curve) at ωpit = 200.0055, ωpit = 200.011, and ωpit =
200.0165 (νi/ωpi = 0.1).

conclude this section, for a variation of νi/ωpi from 0.05
to 0.1, and for the parameters we are choosing, we get
a thinner layer of acceleration of the argon ions close to
the plate together with higher ion and electron currents
and density at the plate, and a stronger modulation of
the electron density charge, and electron current in space.
At steady state, the total current collected at the plate is
zero, and the potential and electric field profiles in front
of the plate are constant.

4 Results for the case including electron
collisions

We repeat the simulation presented in Section 3 for
νi/ωpi = 0.1, by including in equation (1) an electron col-
lision term with νe/ωpi = 0.1, or νe/ωpe = 0.1

√
me/mi.

Figures 18–24 present the results obtained in this case,
which show essentially the same features as discussed in
Section 3. However the electron oscillations as discussed
in the previous section are more damped. Figure 18 shows
the electron distribution function, with the sawteeth struc-
ture appearing in the contour plot, as previously dis-
cussed. The amplitude of the electron oscillations as ap-
parent in Figure 19 for the potential are more damped
compared to those presented in Figure 12. Similarly in
Figure 20 for the electric field, in Figure 21 for the den-
sity profiles, in Figure 22 for the charge, and in Figure 24
for the electron current. It should a period of oscillations
of 0.0235. The results in Figure 23 for the argon ions cur-
rent Jxi show essentially the same steady state current
profile as in Figure 16. Again the steady state shows the
total current Jxi − Jxe at x = 0 at the left plate equal to
zero.

We next increase the electron collision frequency to
νe/ωpi = 0.3, or νe/ωpe = 0.3

√
me/mi. Figures 25–29

present the results. We reach rapidly in this case a
state-state without oscillations. Figure 25 shows the con-
tour plot of the electron distribution function. Figure 26
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Fig. 18. Same as Figure 11, but for the electron distribution
function at ωpit = 200.

Fig. 19. Potential during a half period of oscillation, ωpit =
200.0055 to ωpit = 200.018; the period is extended until ωpit =
200.029 (νe/ωpi = 0.1).

Fig. 20. Electric field during half period from ωpit = 200.0055
to ωpit = 200.018; (νe/ωpi = 0.1).

Fig. 21. Density profiles for electrons (full curve) and argon
ions (broken curve), at ωpit = 200.0055 and ωpit = 200.018
(νe/ωpi = 0.1).

Fig. 22. Charge ni − ne at ωpit = 200.0055, ωpit = 200.012;
and ωpit = 200.018 (νe/ωpi = 0.1).
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Fig. 23. Argon ions current Jxi (full curve) and velocity Jxi/ni

(broken curve) at ωpit = 200.0055 (νe/ωpi = 0.1).

Fig. 24. Electrons current Jxe (full curve) and velocity Jxe/ne

(broken curve) at ωpit = 200.012, ωpit = 200.0185 and ωpit =
200.0235 (νe/ωpi = 0.1).

presents the potential (full curve) and the electric field
(broken curve). The charge collected at the plate as in
equation (5), which is equal to the electric field at x = 0 in
Figure 26, is −1.61758. The charge σ appearing in the sys-
tem is 1.61818. The resulting electric field at x = L, as de-
fined by equation (10), is Ex)x=L = −1.61758+1.61818 =
0.0006. The density profile is given in Figure 27 (solid
line for the electrons, broken line for the ions). Figure 28
presents the equilibrium charge (ni−ne). In Figure 29, we
present the electron current in full curve, the ion current
in broken curve, which are reaching the plate at x = 0
with the same value. The total current (dotted curve in
Fig. 29) is exactly equal to zero at the plate at x = 0.

5 Conclusions

The effect of the electron distribution function on the
plasma parameters of an argon discharge has been the sub-
ject of important studies, using a volume-averaged global

Fig. 25. Contour plot of the distribution functions of the
electrons for the case νe/ωpi = 0.3. Lower curves, distribu-
tion functions obtained by cuts at: (a) x = 0; (b) x = 5λDe;
(c) x = 15λDe; (d) x = 75λDe; (e) x = 150λDe.

Fig. 26. Potential (full curve) and electric field (broken curve)
for the case νe/ωpi = 0.3.
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Fig. 27. Density profiles for electrons (full curve) and argon
ions (broken curve), for the case νe/ωpi = 0.3.

Fig. 28. Charge ni − ne for the case νe/ωpi = 0.3.

model, which is not meant to give accurate values of the
plasma parameters, but rather some indication on how
one parameter depends on another ([15] and references
therein). In the present work however, we have presented
a one-dimensional Eulerian Vlasov code, in which both
electrons and ions are treated with a kinetic equation,
to study the self-consistent solution of a plasma facing a
floating collector. Accurate calculation of the distribution
functions have been presented. In the first case a collision
term has been used for the positive ion species only, mod-
elling collisions and ionization, hence a steady state can
be reached for the ions. The electrons are allowed to flow
from the right boundary and established a sheath struc-
ture with steady state oscillations. A constant charge and
electric field is established at the left plate, accelerating
the ions toward the left plate and decelerating the elec-
trons such that the total current at the left plate is zero.
Adding the electron collisions has a tendency to damp and
eliminate the electron oscillations. In all cases, charges ap-
pearing in the system, or collected a the plate at x = 0

Fig. 29. Electron current (full curve), ion current (broken
curve), and total current (dotted curve), for the case νe/ωpi =
0.3.

are accurately taken care of, and the agreement in veri-
fying equation (10) is fairly good. The codes are run for
a sufficiently long time to ensure the distribution func-
tions are reaching a steady state or equilibrium. The in-
clusion of the electrons kinetic is important since the elec-
trons distribution function determines the rates at which
a multitude of electron driven processes will proceed in
low temperature plasmas. When oscillations are present,
we have followed the electron oscillations appearing for
several thousand periods, for the different cases consid-
ered. They always remained regular in their periodicity,
and especially for νi/ωpi = 0.1 they showed in the den-
sity plots what appears to be nodes at which the electron
density remained constant during the oscillations. So the
picture of the density oscillations in space in this case is
essentially that of a standing wave. The case with argon
ions we have studied showed the ions strongly accelerat-
ing towards the floating plate by a steep electric field in
front of the plate, accelerating the ions and pushing back
the electrons. The inclusion of a self-consistent treatment
for the generation and loss processes (namely ionization,
attachment, detachment, recombination), can be done as
reported in reference [16], and can certainly have impor-
tant effects on the observed oscillations of the electrons. A
self-consistent collision and source term operators will al-
low to study more accurately the smooth transition from
the neutral plasma bulk to the formation of a charge sep-
aration, an electric field and the acceleration of the ions
in the Debye sheath in front of the floating plate.
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